‘ Chapter 19: Distributed Databases

B Heterogeneous and Homogeneous Databases
m Distributed Data Storage

‘ Distributed Database System

m A distributed database system consists of loosely coupled sites that
share no physical component

‘Homogeneous Distributed Databases

B In a homogeneous distributed database
* All sites have identical software

* Are aware of each other and agree to cooperate in processing user
requests.

‘ Distributed Data Storage

B Assume relational data model
B Replication

* System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.

‘ Data Replication

m A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

m Full replication of a relation is the case where the relation is

‘ Data Replication (Cont.)

m Advantages of Replication

* Availability: failure of site containing relation r does not result in
unavailability of r is replicas exist.

* Parallelism: queries on r may be processed by several nodes in parallel.

Data Fragmentation

[]

m Division of relation r into fragments ry, r,, ..., r, which contain
sufficient information to reconstruct relation r.

m Horizontal fragmentation: each tuple of r is assigned to one or
more fragments

‘Horizontal Fragmentation of account Relation

branch-name account-number balance
Hillside A-305 500
Hillside A-226 336
Hillside A-155 62

‘ Vertical Fragmentation of employee-info Relation
branch-name | customer-name tuple-id
Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5

‘ Advantages of Fragmentation

® Horizontal:
* allows parallel processing on fragments of a relation

* allows a relation to be split so that tuples are located where they are
most frequently accessed

‘ Data Transparency

B Data transparency: Degree to which system user may remain
unaware of the details of how and where the data items are stored
in a distributed system

B Consider transparency issues in relation to:

‘ Naming of Data Items - Criteria

1. Every data item must have a system-wide unique name.
2. It should be possible to find the location of data items efficiently.

‘ Centralized Scheme - Name Server

m Structure:
* name server assigns all names

* each site maintains a record of local data items

‘ Use of Aliases

m Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.

* Fulfills having a unique identifier, and avoids problems associated
with central control.

‘ Distributed Transactions

B Transaction may access data at several sites.

B Each site has a local transaction manager responsible for:
* Maintaining a log for recovery purposes

‘ Transaction System Architecture

‘ System Failure Modes

B Failures unique to distributed systems:
* Failure of a site.
* Loss of massages

‘ Commit Protocols

m Commit protocols are used to ensure atomicity across sites

* a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.

‘ Two Phase Commit Protocol (2PC)

B Assumes fail-stop model — failed sites simply stop working, and
do not cause any other harm, such as sending incorrect
messages to other sites.

10

‘ Phase 1: Obtaining a Decision

B Coordinator asks all participants to prepare to commit transaction
T

* C, adds the records <prepare T> to the log and forces log to stable
storage

‘ Phase 2: Recording the Decision

E T can be committed of C, received a ready T message from all
the participating sites: otherwise T must be aborted.

‘ Handling of Failures - Site Failure

When site S; recovers, it examines its log to determine the fate of
transactions active at the time of the failure.

B |og contain <commit T> record: site executes redo (T)

B Log contains <abort T> record: site executes undo (T)

B Log contains <ready T> record: site must consult C; to determine

‘ Handling of Failures- Coordinator Failure

m [f coordinator fails while the commit protocol for T is executing
then participating sites must decide on T's fate:

1. If an active site contains a <commit T> record in its log, then T must
be committed.

2. If an active site contains an <abort T> record in its log, then T must
be aborted.

12

‘Handling of Failures - Network Partition

m If the coordinator and all its participants remain in one partition,
the failure has no effect on the commit protocol.

m If the coordinator and its participants belong to several partitions:

‘ Recovery and Concurrency Control

®m In-doubt transactions have a <ready T>, but neither a
<commit T>, nor an <abort T> log record.

B The recovering site must determine the commit-abort status of
such transactions by contacting other sites; this can slow and

potentially block recovery.

13

‘ Three Phase Commit (3PC)

B Assumptions:
* No network partitioning
* At any point, at least one site must be up.
* At most K sites (participants as well as coordinator) can fail
B Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
* Every site is ready to commit if instructed to do so

Alternative Models of Transaction
Processing

m Notion of a single transaction spanning multiple sites is
inappropriate for many applications

* E.g. transaction crossing an organizational boundary

* No organization would like to permit an externally initiated
transaction to block local transactions for an indeterminate period

& Alternative Models (Cont.)

B Motivating example: funds transfer between two banks
* Two phase commit would have the potential to block updates on the
accounts involved in funds transfer
* Alternative solution:
> Debit money from source account and send a message to other
site
> Site receives message and credits destination account
* Messaging has long been used for distributed transactions (even
before computers were invented!)
m Atomicity issue
* once transaction sending a message is committed, message must
guaranteed to be delivered

> Guarantee as long as destination site is up and reachable, code to
handle undeliverable messages must also be available

e.g. credit money back to source account.
* If sending transaction aborts, message must not be sent

19.29 ©Silberschatz, Ko

Database System Concepts

& Messaging

B Code to handle messages has to take care of variety of failure
situations (even assuming guaranteed message delivery)
* E.g. if destination account does not exist, failure message must be
sent back to source site

* When failure message is received from destination site, or
destination site itself does not exist, money must be deposited back

in source account
> Problem if source account has been closed
get humans to take care of problem
m User code executing transaction processing using 2PC does not
have to deal with such failures

B There are many situations where extra effort of error handli
worth the benefit of absence of blocking

* E.g. pretty much all transactions across organizations

is

Database System Concepts 19.30 ©Silberschatz,

15

‘ Persistent Messaging and Workflows

m Workflows provide a general model of transactional processing
involving multiple sites and possibly human processing of certain
steps

* E.g. when a bank receives a loan application, it may need to

‘Implementation of Persistent Messaging

m Sending site protocol

1. Sending transaction writes message to a special relation messages-to-send. The
message is also given a unique identifier.

Writing to this relation is treated as any other update, and is undone if the
transaction aborts.

The message remains locked until the sending transaction commits
2. A message delivery process monitors the messages-to-send relation

16

‘nplementation of Persistent Messaging

B Receiving site protocol
* When a message is received

1. itis written to a received-messages relation if it is not already
present (the message id is used for this check). The transaction
performing the write is committed

2. An acknowledgement (with message id) is then sent to the
sending site.

17

‘ Concurrency Control

m Modify concurrency control schemes for use in distributed
environment.

‘ Single-Lock-Manager Approach

B System maintains a single lock manager that resides in a single
chosen site, say S;

18

‘ingle-Lock—Manager Approach (Cont.)

B The transaction can read the data item from any one of the sites
at which a replica of the data item resides.

® Writes must be performed on all replicas of a data item

‘ Distributed Lock Manager

® In this approach, functionality of locking is implemented by lock
managers at each site

* Lock managers control access to local data items
> But special protocols may be used for replicas

19

‘ Primary Copy

B Choose one replica of data item to be the primary copy.

* Site containing the replica is called the primary site for that data
item

‘ Majority Protocol

B Local lock manager at each site administers lock and unlock
requests for data items stored at that site.

B When a transaction wishes to lock an unreplicated data item Q
esiding at site S;, a message is sent to S, ‘s lock manage

20

‘ Majority Protocol (Cont.)

m |n case of replicated data

* If Q is replicated at n sites, then a lock request message must be
sent to more than half of the n sites in which Q is stored.

* The transaction does not operate on Q until it has obtained a lock on
a majority of the replicas of Q.

‘ Biased Protocol

B Local lock manager at each site as in majority protocol, however,
requests for shared locks are handled differently than requests
for exclusive locks.

® Shared locks. When a transaction needs to lock data item Q, it
simply requests a lock on Q from the lock manager at one site

21

‘ Quorum Consensus Protocol

m A generalization of both majority and biased protocols

B Each site is assigned a weight.
* Let S be the total of all site weights

‘ Deadlock Handling

Consider the following two transactions and history, with item X and
transaction T, at site 1, and item Y and transaction T, at site 2:
T write (X) T, write (Y)
write (Y) write (X)

22

‘ Centralized Approach

m A global wait-for graph is constructed and maintained in a single
site; the deadlock-detection coordinator

* Real graph: Real, but unknown, state of the system.

Local and Global Wait-For Graphs

O—®)| |&—
®» ® ®

Local

23

‘ Example Wait-For Graph for False Cycles

Initial state:

‘ False Cycles (Cont.)

B Suppose that starting from the state shown in figure,
1. T, releases resources at S;

> resulting in a message remove T, — T, message from the
Transaction Manager at site S, to the coordinator)

24

‘ Unnecessary Rollbacks

B Unnecessary rollbacks may result when deadlock has indeed
occurred and a victim has been picked, and meanwhile one of
the transactions was aborted for reasons unrelated to the
deadlock.

‘ Timestamping

B Timestamp based concurrency-control protocols can be used in
distributed systems

B Each transaction must be given a unique timestamp

B Main problem: how to generate a timestamp in a distributed
fashion

25

‘ Timestamping (Cont.)

m A site with a slow clock will assign smaller timestamps
* Still logically correct: serializability not affected
* But: “disadvantages” transactions

‘ Replication with Weak Consistency

B Many commercial databases support replication of data with
weak degrees of consistency (l.e., without a guarantee of

serializabiliy)
B E.g.. master-slave replication: updates are performed at a

26

‘ Replication with Weak Consistency (Cont.)

m Replicas should see a transaction-consistent snapshot of the
database

* That is, a state of the database reflecting all effects of all
transactions up to some point in the serialization order, and no

‘ Multimaster Replication

® With multimaster replication (also called update-anywhere
replication) updates are permitted at any replica, and are
automatically propagated to all replicas

* Basic model in distributed databases, where transactions are

27

Lazy Propagation (Cont.)

® Two approaches to lazy propagation

* Updates at any replica translated into update at primary site, and then propagated
back to all replicas

> Updates to an item are ordered serially

> But transactions may read an old value of an item and use it to perform an
update, result in non-serializability

28

‘ Availability

® High availability: time for which system is not fully usable should
be extremely low (e.g. 99.99% availability)

B Robustness: ability of system to function spite of failures of
components

‘ Reconfiguration

B Reconfiguration:
* Abort all transactions that were active at a failed site

> Making them wait could interfere with other transactions since
they may hold locks on other sites

> However, in case only some replicas of a data item failed, it may

29

‘ Reconfiguration (Cont.)

B Since network partition may not be distinguishable from site
failure, the following situations must be avoided

* Two ore more central servers elected in distinct partitions

‘ Majority-Based Approach

B The majority protocol for distributed concurrency control can be
modified to work even if some sites are unavailable

* Each replica of each item has a version number which is updated
when the replica is updated, as outlined below

30

‘ Majority-Based Approach

m Majority protocol (Cont.)
* Write operations

> find highest version number like reads, and set new version
number to old highest version + 1

> Writes are then performed on all locked replicas and version
number on these replicas is set to new version number

‘ Read One Write All (Available)

B Biased protocol is a special case of quorum consensus

* Allows reads to read any one replica but updates require all replicas
to be available at commit time (called read one write all)

B Read one write all available (ignoring failed sites) is attractive,

31

‘ Site Reintegration

B When failed site recovers, it must catch up with all updates that it
missed while it was down

* Problem: updates may be happening to items whose replica is
stored at the site while the site is recovering

‘ Comparison with Remote Backup

B Remote backup (hot spare) systems (Section 17.10) are also
designed to provide high availability

B Remote backup systems are simpler and have lower overhead

‘ Coordinator Selection

m Backup coordinators

* site which maintains enough information locally to assume the role
of coordinator if the actual coordinator fails

* executes the same algorithms and maintains the same internal state

‘ Bully Algorithm

m |[f site S, sends a request that is not answered by the coordinator
within a time interval T, assume that the coordinator has failed S;
tries to elect itself as the new coordinator.

B S;sends an election message to every site with a higher

‘ Bully Algorithm (Cont.)

B If no message is sent within T’, assume the site with a higher
number has failed; S; restarts the algorithm.

m After a failed site recovers, it immediately begins execution of the

‘ Distributed Query Processing

B For centralized systems, the primary criterion for measuring the
cost of a particular strategy is the number of disk accesses.

B |n a distributed system, other issues must be taken into account:

‘ Query Transformation

B Translating algebraic queries on fragments.
* It must be possible to construct relation r from its fragments

* Replace relation r by the expression to construct relation r from its
fragments

‘ Example Query (Cont.)

B Since account, has only tuples pertaining to the Hillside branch, we
can eliminate the selection operation.

m Apply the definition of account, to obtain

‘ Simple Join Processing

m Consider the following relational algebra expression in which the
three relations are neither replicated nor fragmented

account X depositor i branch

36

‘Possible Query Processing Strategies

B Ship copies of all three relations to site S, and choose a strategy
for processing the entire locally at site S,

B Ship a copy of the account relation to site S, and compute temp,
= account X depositor a hip temp, from 0 and

‘ Semijoin Strategy

B Letr, be a relation with schema R, stores at site S,
Let r, be a relation with schema R, stores at site S,
B Evaluate the expression r; x| r, and obtain the result at S,.

1. Compute temp; « [Irs , re (f1) at S1.

‘ Formal Definition

B The semijoin of r; with r,, is denoted by:
r, o<r,

m itis defined by:

‘ Join Strategies that Exploit Parallelism

m Considerr; X r, X ry X r, where relation ri is stored at site S;. The

result must be presented at site S,.

38

‘Heterogeneous Distributed Databases

B Many database applications require data from a variety of
preexisting databases located in a heterogeneous collection of
hardware and software platforms

m Data models may differ (hierarchical, relational , etc.)

‘ Advantages

B Preservation of investment in existing
* hardware
* system software

* Applications

‘ Unified View of Data

m Agreement on a common data model
* Typically the relational model
m Agreement on a common conceptual schema

‘ Query Processing

m Several issues in query processing in a heterogeneous database
B Schema translation

* Write a wrapper for each data source to translate data to a global
schema

‘ Mediator Systems

m Mediator systems are systems that integrate multiple
heterogeneous data sources by providing an integrated global
view, and providing query facilities on global view

* Unlike full fledged multidatabase systems, mediators generally do

41

‘ Directory Systems

m Typical kinds of directory information
* Employee information such as name, id, email, phone, office addr, ..
* Even personal information to be accessed from multiple places

> e.g. Web browser bookmarks
® White pages

‘ Directory Access Protocols

B Most commonly used directory access protocol:
* LDAP (Lightweight Directory Access Protocol)
* Simplified from earlier X.500 protocol
B Question: Why not use database protocols like ODBC/JDBC?

42

‘ LDAP:Lightweight Directory Access
Protocol

m |LDAP Data Model
B Data Manipulation

‘ LDAP Data Model

m LDAP directories store entries
* Entries are similar to objects

‘ LDAP Data Model (Cont.)

B Entries can have attributes
* Attributes are multi-valued by default
* LDAP has several built-in types

‘ LDAP Data Model (cont.)

®m Entries organized into a directory information tree according to
their DNs

* Leaf level usually represent specific objects

‘ LDAP Data Manipulation

® Unlike SQL, LDAP does not define DDL or DML

® Instead, it defines a network protocol for DDL and DML
* Users use an API or vendor specific front ends

‘ LDAP Queries

® LDAP query must specify
* Base: a node in the DIT from where search is to start
* A search condition

‘ LDAP URLS

m First part of URL specifis server and DN of base
* ldap:://aura.research.bell-labs.com/o=Lucent,c=USA

m Optional further parts separated by ? symbol

‘ C Code using LDAP AP

#include <stdio.h>
#include <ldap.h>
main() {

‘ C Code using LDAP API (Cont.)

Idap_search_s(ld, “o=Lucent, c=USA”, LDAP_SCOPE_SUBTREE,
“cn=Korth”, attrList, /* attrsonly*/ 0, &res);
[*attrsonly = 1 => return only schema not actual results*/
printf(“found%d entries”, Idap_count_entries(ld, res));
for (entry=Ildap_first_entry(ld, res); entry = NULL;
entry=ldap_next_entry(id, entry)) {
dn = Idap_get_dn(ld, entry);

‘ LDAP API (Cont.)

m |LDAP API also has functions to create, update and delete entries

B Each function call behaves as a separate transaction
* LDAP does not support atomicity of updates

Distributed Directory Trees

® Organizational information may be split into multiple directory information
trees
* Suffix of a DIT gives RDN to be tagged onto to all entries to get an overall DN

> E.g. two DITs, one with suffix o=Lucent, c=USA
and another with suffix o=Lucent, c=India

* Organizations often split up DITs based on geographical location or by
organizational structure

End of Chapter

‘ Three Phase Commit (3PC)

B Assumptions:
* No network partitioning

* At any point, at least one site must be up.

‘Phase 2. Recording the Preliminary Decision

m Coordinator adds a decision record (<abort T> or
< precommit T>) in its log and forces record to stable storage.

B Coordinator sends a message to each participant informing it of

49

‘Phase 3. Recording Decision in the Database

Executed only if decision in phase 2 was to precommit

B Coordinator collects acknowledgements. It sends <commit T>

‘ Handling Site Failure

m Site Failure. Upon recovery, a participating site examines its log
and does the following:

* Log contains <commit T> record: site executes redo (T)

50

‘ Handling Site Failure (Cont.)

B Log contains <precommit T> record, but no <abort T> or
<commit T>: site consults Ci to determine the fate of T.

* if C;says T aborted, site executes undo (T)
i i i edo (T)

‘ Coordinator — Failure Protocol

1. The active participating sites select a new coordinator, C,,

2. C,., requests local status of T from each participating site
3. Each participating site including C,.,, determines the local
status of T:

* Committed. The log contains a < commit T> record

* Aborted. The log contains an <abort T> record.

ol

‘ Coordinator Failure Protocol (Cont.)

5.C decides either to commit or abort T, or to restart the

new

three-phase commit protocol:
* Commit state for any one participant = commit

Fully Distributed Deadlock Detection
Scheme

B Each site has local wait-for graph; system combines information
in these graphs to detect deadlock

B Local Wait-for Graphs

‘ Fully Distributed Approach (Cont.)

m System model: a transaction runs at a single site, and makes
requests to other sites for accessing non-local data.

B Each site maintains its own local wait-for graph in the normal
fashion: there is an edge T, - T, if T; is waiting on a lock held by
T. (note: T; and T, may be non-local).

‘ Fully Distributed Approach (Cont.)

m Centralized Deadlock Detection - all graph edges sent to central
deadlock detector

m Distributed Deadlock Detection - “path pushing” algorithm

®m Path pushing initiated wen a site detects a local cycle involving

53

‘Fully Distributed Approach: Example

Site 1
EX@3) -T, - T, =T, ~EX(2)

':ully Distributed Approach Example (Cont.)

B Site passes wait-for information along path in graph:
* Let EX() - T, » ... T, - EX (k) be a path in local wait-for graph at

‘ Fully Distributed Approach (Cont.)

m After the path EX (2) -~ T; — T, — EX (1) has been pushed to Site 1 we
have:

‘ Fully Distributed Approach (Cont.)

m After the push, only Site 1 has new edges. Site 1 passes (Ts, T;,
T,, T,) to site 2 since 5 > 3 and T, is waiting for a data item, at
site 2

B The new state of the local wait-for graph:

55

‘ Naming of Replicas and Fragments

®m Each replica and each fragment of a data item must have a
unigue name.

* Use of postscripts to determine those replicas that are replicas of
the same data item, and those fragments that are fragments of the

56

‘ Name - Translation Algorithm

if name appears in the alias table
then expression := map (name)
else expression := name;

function map (n)

if n appears in the replica table
then result := name of replica of n;

txample of Name - Translation Scheme

B A user at the Hillside branch (site S,), uses the alias local-
account for the local fragment account.fl of the account relation.

® When this user references local-account, the query-processing

S7

‘ Transparency and Updates

m Must ensure that all replicas of a data item are updated and that
all affected fragments are updated.

B Consider the account relation and the insertion of the tuple:

‘ Transparency and Updates (Cont.)

m Vertical fragmentation of deposit into deposit, and deposit,

B The tuple (“Valleyview”, A-733, ‘Jones”, 600) must be split into two
fragments:

* one to be inserted into deposit,

Network Topologies

59

‘ Network Topologies (Cont.)

= ®
o o
(c) o 3 (@

tree siructured network gtar netwark

‘ Network Topology (Cont.)

m A partitioned system is split into two (or more) subsystems
(partitions) that lack any connection.

B Tree-structured: low installation and communication costs; the
ilure of a single link can partition network

60

‘ Robustness

® A robustness system must:

* Detect site or link failures
* Reconfigure the system so that computation may continue.

* Recover when a processor or link is repaired

‘ Procedure to Reconfigure System

m |If replicated data is stored at the failed site, update the catalog so
that queries do not reference the copy at the failed site.

B Transactions active at the failed site should be aborted.
m If the failed site is a central server for some subsystem, an

61

‘ Figure 19.7

62

Figure 19.13

‘ Figure 19.14

63

